Трансформаторы: их назначение и классификация.

Трансформаторы: их назначение и классификация.
Трансформатор представляет собой статический электромагнитный аппарат с двумя ( или больше ) обмотками, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.
При передаче электрической энергии от электростанции к потребителям сила тока в линии обуславливает потери энергии в этой линии и расход цветных металлов на ее устройство. Если при одной и той же передаваемой мощности увеличить напряжение, то сила тока в такой же мере уменьшится, а следовательно, можно будет применить провода с меньшим поперечным сечением. Это сократит расход цветных металлов при устройстве линии электропередачи и снизит потери энергии в ней.


Электрическая энергия вырабатывается на электростанциях синхронными генераторами при напряжении 11—20 кВ; в отдельных случаях применяют напряжение 30—35 кВ. Хотя такие напряжения являются слишком высокими для их непосредственного использования в производстве и для бытовых нужд, они недостаточны для экономичной передачи электроэнергии на большие расстояния. Дальнейшее повышение напряжения в линиях электропередачи ( до 750 кВ и более ) осуществляют повышающими трансформаторами.
Приемники электрической энергии ( лампы накаливания, электродвигатели и т. д. ) из соображений безопасности рассчитывают на более низкое напряжение ( 110-380 В ). Кроме того, изготовление электрических аппаратов, приборов и машин на высокое напряжение связано со значительными конструктивными сложностями, так как токоведущие части этих устройств при высоком напряжении требуют усиленной изоляции. Поэтому высокое напряжение, при котором происходит передача энергии, не может быть непосредственно использовано для питания приемников и подводится к ним через понижающие трансформаторы.


Электрическую энергию переменного тока по пути от электростанции, где она вырабатывается, до потребителя приходится трансформировать 3-4 раза. В распределительных сетях понижающие трансформаторы нагружаются неодновременно и не на полную мощность. Поэтому полная мощность трансформаторов, используемых для передачи и распределения электроэнергии, в 7-8 раз больше мощности генераторов, устанавливаемых на электростанциях.
Преобразование энергии в трансформаторе осуществляется переменным магнитным полем с использованием магнитопровода.


Напряжения первичной и вторичной обмоток, как правило, неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного — понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие — для ее распределения между потребителями.


В зависимости от назначения различают силовые трансформаторы, измерительные трансформаторы напряжения и трансформаторы тока.


Силовые трансформаторы преобразуют переменный ток одного напряжения в переменный ток другого напряжения для питания электроэнергией потребителей. В зависимости от назначения они могут быть повышающими или понижающими. В распределительных сетях применяют, как правило, трехфазные двухобмоточные понижающие трансформаторы, преобразующие напряжение 6 и 10 кВ в напряжение 0,4 кВ.


Измерительные трансформаторы напряжения  это промежуточные трансформаторы, через которые включаются измерительные приборы при высоких напряжениях.Благодаря этому измерительные приборы оказываются изолированными от сети, что делает возможным применение стандартных приборов (с переградуированием их шкалы) и тем самым расширяет пределы измеряемых напряжений.


Трансформаторы напряжения используются как для измерения напряжения, мощности, энергии, так и для питания цепей автоматики, сигнализаций и релейной защиты линий электропередачи от замыкания на землю.


В ряде случаев трансформаторы напряжения могут быть использованы как маломощные понижающие силовые трансформаторы или как повышающие испытательные трансформаторы (для испытания изоляции электрических аппаратов).


Трансформатор тока представляет собой вспомогательный аппарат, в котором вторичный ток практически пропорционален первичному току и предназначенный для включения измерительных приборов и реле в электрические цепи переменного тока.


Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего их персонала от высокого напряжения.


Классификация трансформаторов напряжения
Трансформаторы напряжения различаются:

а) по числу фаз — однофазные и трехфазные;
б) по числу обмоток — двухобмоточные и трехобмоточные;
в) по классу точности, т. е. по допускаемым значениям погрешностей;
г) по способу охлаждения — трансформаторы с масляным охлаждением (масляные), с естественным воздушным охлаждением (сухие и с литой изоляцией);
д) по роду установки — для внутренней установки, для наружной установки и для комплектных распределительных устройств (КРУ).


Для напряжений до 6 кВ трансформаторы напряжения изготовляют сухими, т. е. с естественным воздушным охлаждением. Для напряжений выше 6 кВ применяют масляные трансформаторы напряжения.


Трансформаторы внутренней установки предназначены для работы при температуре окружающего воздуха от -40 до + 45°С с относительной влажностью до 80 %.
В однофазных трансформаторах напряжения на 6 к 10 кВ преимущественно применяеться литая изоляция. Трансформаторы с литой изоляцией полностью или частично (одни обмотки) залиты изоляционной массой (эпоксидной смолой). Такие трансформаторы, предназначенные для внутренней установки, выгодно отличаются от масляных: имеют меньшие массу и габаритные размеры и почти не требуют ухода в эксплуатации.


Трехфазные двухобмоточные трансформаторы напряжения имеют обычные трехстержневые магнитопроводы, а трехобмоточные — однофазные броневые. Трехфазный трехобмоточный трансформатор представляет собой группу из трех однофазных однополюсных единиц, обмотки которых соединены по соответствующей схеме. Трехфазные трехобмоточные трансформаторы напряжения старой серии (до 1968—1969 гг.) имели бронестержневые магнитопроводы. Трехфазный трансформатор меньше по массе и габаритам, чем группа из трех однофазных трансформаторов. При работе трехфазного трансформатора для резерва нужно иметь другой трансформатор на полную мощность


В масляных трансформаторах основной изолирующей и охлаждающей средой является трансформаторное масло.


Масляный трансформатор состоит из магнитопровода, обмоток, бака, крышки с вводами. Магнитопровод собирают из изолированных друг от друга (для уменьшения потерь на вихревые токи) листов холоднокатаной электротехнической стали. Обмотки изготовляют из медного или алюминиевого провода. Для регулирования напряжения обмотка ВН имеет ответвления, соединяющиеся с переключателем. В трансформаторах предусмотрено два вида переключении ответвлений: под нагрузкой — РПН (регулирование под нагрузкой) и без нагрузки, после отключения трансформатора от сети — ПБВ (переключение без возбуждения). Наиболее распространен второй способ регулирования напряжения как наиболее простой.


Кроме указанных трансформаторов с масляным охлаждением (ТМ) выпускаются трансформаторы в герметичном исполнении (ТМГ), в которых масло не сообщается с воздухом и, следовательно, исключается его ускоренное окисление и увлажнение. Масляные трансформаторы в герметичном исполнении полностью заполнены трансформаторным маслом и не имеют расширителя, а температурные изменения его объема при нагревании и охлаждении компенсируются изменением объема гофров стенок бака. Эти трансформаторы заполняются маслом под вакуумом, вследствие чего повышается электрическая прочность их изоляции.


Сухой трансформатор, так же как и масляный, состоит из магнитопровода, обмоток ВН и НН, заключенных в защитный кожух. Основной изолирующей и охлаждающей средой является атмосферный воздух. Однако воздух является менее совершенной изолирующей и охлаждающей средой, чем трансформаторное масло. Поэтому в сухих трансформаторах все изоляционные промежутки и вентиляционные каналы делают большими, чем в масляных.


Сухие трансформаторы изготовляют с обмотками со стеклоизоляцией класса нагревостойкости В (ТСЗ), а также с изоляцией на кремнийорганических лаках класса Н (ТСЗК). Для уменьшения гигроскопичности обмотки пропитывают специальными лаками. Применение в качестве изоляции обмоток стекловолокна или асбеста позволяет значительно повысить рабочую температуру обмоток и получить практически пожаробезопасную установку. Это свойство сухих трансформаторов дает возможность применять их для установки внутри сухих помещений в тех случаях, когда обеспечение пожарной безопасности установкиявляется решающим фактором. Иногда сухие трансформаторы заменяют более дорогими и сложными в изготовлении совтоловыми.


Сухие трансформаторы имеют несколько большие габаритные размеры и массу (ТСЗ) и меньшую перегрузочную способность, чем масляные, и используются для работы в закрытых помещениях с относительной влажностью не более 80%. К преимуществам сухих трансформаторов относят их пожаробезопасность (отсутствие масла), сравнительную простоту конструкции и относительно малые затраты на эксплуатацию.


Классификация трансформаторов тока


Трансформаторы тока классифицируются по различным признакам:


1. По назначению трансформаторы тока можно разделить на измерительные, защитные, промежуточные (для включения измерительных приборов в токовые цепи релейной защиты, для выравнивания токов в схемах дифференциальных защит и т. д.) и лабораторные (высокой точности, а такжесо многими коэффициентами трансформации).


2. По роду установки различают трансформаторы тока:


а) для наружной установки (в открытых распределительных устройствах);


б) для внутренней установки;


в) встроенные в электрические аппараты и машины: выключатели, трансформаторы, генераторы и т. д.;


г) накладные — одевающиеся сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора);


д) переносные (для контрольных измерений и лабораторных испытаний).

3. По конструкции первичной обмотки трансформаторы тока делятся на:


а) многовитковые (катушечные, с петлевой обмоткой и с восьмерочной обмоткой);


б) одновитковые (стержневые);


в) шинные.


4. По способу установки трансформаторы тока для внутренней и наружной установки разделяются на:


а) проходные;


б) опорные.


5. По выполнению изоляции трансформаторы тока можно разбить на группы:


а) с сухой изоляцией (фарфор, бакелит, литая эпоксидная изоляция и т. д.);


б) с бумажно-масляной изоляцией и с конденсаторной бумажно-масляной изоляцией;


в) с заливкой компаундом.


6. По числу ступеней трансформации имеются трансформаторы тока:


а) одноступенчатые;


б) двухступенчатые (каскадные).


7. По рабочему напряжению различают трансформаторы:


а) на номинальное напряжение выше 1000 В;


б) на номинальное напряжение до 1000 В.


Сочетание различных классификационных признаков вводится в обозначение типа трансформаторов тока, состоящее из буквенной и цифровой частей.


Трансформаторы тока характеризуются номинальным током, напряжением, классом точности и конструктивным исполнением. На напряжении 6—10 кВ их изготовляют опорными и проходными с одной и двумя вторичными обмотками классов точности 0,2; 0,5; 1 и 3. Класс точности указывает предельную погрешность, вносимую трансформатором тока в результаты измерений. Трансформаторы классов точности 0,2, имеющие минимальную погрешность, используют для лабораторных измерений, 0,5 — для питания счетчиков, 1 и 3 — для питания токовых обмоток реле и приборов технических измерений. Для безопасной эксплуатации вторичные обмотки должны быть заземлены и не должны быть разомкнуты.


При монтаже распределительных устройств напряжением 6—10 кВ применяют трансформаторы тока с литой и фарфоровой изоляцией, а при напряжении до 1000 В — с литой, хлопчатобумажной и фарфоровой.


Принцип действия и устройство трансформатора


Действие трансформатора основано на явлении взаимной инд?
0
1894
06.03.2019
Отзывов: 0

Написать отзыв

Внимание: HTML не поддерживается! Используйте обычный текст.